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Abstract

This expository paper provides an overview of expanders and the various forms of the expan-
sion property: graph edge expansion, spectral gap, rapid mixing, and connections to Property
(T ) and Selberg’s 3

16 Theorem. Some key ideas are also discussed from recent results on expan-
sion in linear algebraic groups.

1 Introduction

Expanders are sparse graphs with strong connectivity properties. Although a simple combinatorial
proof shows the existence of families of expanders, the first two known explicit constructions relied
on deep results in representation theory and in the spectral theory of modular forms, respectively.
Originally considered in computer science in the context of networks, expanders have found surpris-
ing connections to and applications in various branches of pure mathematics; see [22] and references
therein.

This expository paper aims to present expanders in various forms and to discuss recent related
results. The paper is organized as follows. Section 2 introduces expanders and looks at several
equivalent reformulations of the expander property. Section 3 takes up the explicit constructions
expanders using Property (T ), Property (τ), and Selberg’s 3

16 Theorem. In particular, we will see
that for every n ≥ 2, Cayley graphs of SLn(Z/pZ) with respect to projections of certain fixed
generators of SLn(Z) form families of expanders. Much of the material in these sections is based
on Lubotzky’s exposition [22], omitting some technical proofs. Section 4 looks at recent results on
expansion in certain linear algebraic groups, initiated by Helfgott’s work in 2005. We discuss Sarnak
and Xue’s idea for exhibiting a spectral gap, as well as key components of Bourgain and Gamburd’s
characterization of expanders for certain Cayley graphs of SL2(Z/pZ), and several generalizations
of this result. Finally, Section 5 discusses the diameter of expanders and a related open problem.
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2 Expander Property and Equivalent Reformulations

This section introduces expanders and looks at various equivalent formulations of the expander
property: edge expansion, the Cheeger constant, spectral gap of the Laplacian, and rapid mixing
in random walks. These equivalences, together with a representation-theoretic reinterpretation, are
summarized as Theorem 3.21 in Section 3.5.

Write X = X(V,E) for a graph with vertex set V and edge set E. For u, v ∈ V , write u ∼ v to
mean that u and v are adjacent, i.e. {u, v} ∈ E. For A ⊂ V , define ∂A = {x ∈ V : dist(x,A) = 1}.
For A,B ⊂ V , write E(A,B) for the set of edges connecting vertices in A to vertices in B. Although
much of the discussion in this section can be carried out more generally, we will only deal with
regular graphs.

2.1 Edge Expansion

Expanders are graphs with uniform growth of small subsets to neighboring vertices under “expan-
sion” through the edges, i.e. edge expansion.

Definition 2.1. A k-regular graph X = X(V,E) with n vertices is called an (n, k, c)-expander if
|∂A| ≥ c|A| for every A ⊂ V with 1 ≤ |A| ≤ n

2 . The expansion coefficient of X is defined to be

c(X) = inf{ |∂A||A| : 1 ≤ |A| ≤ n
2 }.

Every finite connected k-regular graph with n vertices is trivially an (n, k, c)-expander for some
c > 0 (also see Proposition 2.3 below). One therefore always considers a family of expanders, a
family of (n, k, c)-expanders for fixed k and some fixed c > 0, with n going to infinity. Equivalently,
k-regular graphs Xi form a family of expanders if lim infi→∞ c(Xi) > 0.

Several alternative definitions of (n, k, c)-expanders exist in the literature, but with only at
most a constant-factor change in c. For example, define an (n, k, c)′-expander by the condition that

|∂A| ≥ c(1 − |A|n )|A| for every A ⊂ V . Since 1 − |A|n ≥
1
2 when |A| ≤ n

2 , an (n, k, c)′-expander is
an (n, k, c2)-expander. Conversely, an (n, k, c)-expander is an (n, k, ck )′-expander: if |A| ≤ n

2 , then

|∂A| ≥ c|A| ≥ c(1− |A|n )|A|; otherwise B = V \A expands, so |∂A| ≥ 1
k |E(A,B)| ≥ 1

k |∂B| ≥
c
k |B| ≥

c
k (1− |A|n )|A|. The point is that c differ among various definitions by a constant factor independent
of n, and hence the key notion of a family of expanders is consistently defined.

A short probabilistic argument shows the existence of families of expanders; see Proposition
1.2.1 in [22]. We will take up their explicit constructions, a much deeper result, in Section 3.

2.2 Cheeger Constant

For a connected compact Riemannian manifold, one defines its Cheeger isoperimetric constant. The
discrete analogue provides an equivalent reformulation of the expander property.

Definition 2.2. For a finite graph X = X(V,E), define its Cheeger constant h(X) by

h(X) = inf
A,B⊂V

|E(A,B)|
min(|A|, |B|)

,
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where the infimum runs over all partitions V = A ∪B.

For any partition V = A ∪ B, every edge in E(A,B) connects a vertex in ∂A to a vertex in
A. If X is k-regular, then there are between 1 and k edges in E(A,B) for each vertex in ∂A, so
|∂A| ≤ |E(A,B)| ≤ k|∂A|. This allows us to relate edge expansion to the Cheeger constant.

Proposition 2.3. Let X be a k-regular graph with n vertices.

(i) If X is an (n, k, c)-expander, then h(X) ≥ c.

(ii) X is an (n, k, h(X)
k )-expander.

Consequently, k-regular graphs Xi form a family of expanders if and only if lim infi→∞ h(Xi) > 0.

Proof. (i) For any partition V = A ∪ B with say |A| ≤ |B|, edge expansion implies |E(A,B)|
min(|A|,|B|) ≥

|∂A|
|A| ≥ c.

(ii) Let A ⊂ V with 1 ≤ |A| ≤ n
2 . Taking B = V \A, we have |∂A| ≥ |E(A,B)|

k|A| · |A| ≥
h(X)
k |A|.

2.3 Spectral Gap

The Cheeger-Buser inequality relates the Cheeger constant of a connected compact Riemannian
manifold to the first nontrivial eigenvalue of its Laplacian. The discrete analogue therefore provides
another formulation of expansion, as a spectral gap for the combinatorial Laplacian.

Definition 2.4. Let X = X(V,E) be a connected k-regular graph with n vertices. Write L2(V )
for the space of complex-valued functions on V . By fixing the basis of Dirac mass {δv}v∈V , i.e.
δv(u) = 1 if u = v and 0 otherwise, we view an operator on L2(V ) and its matrix interchangeably.

Let A be the adjacency matrix of X, the n × n matrix indexed by V × V such that the (u, v)
entry is 1 if u ∼ v and 0 otherwise. Then the Laplacian ∆ on X is the operator on L2(V ) defined
by ∆ = kI −A.

Note that 1
kA is the averaging operator: if f ∈ L2(V ), then 1

kAf(v) = 1
k

∑
u∼v f(u), the

average value of f at the k vertices adjacent to v. Since 1
kA is symmetric, it is diagonalizable

with n real eigenvalues. Since X is connected, 1 is a simple eigenvalue corresponding to the
space of constant functions. Any other eigenfunction f of 1

kA lies in the orthogonal complement,
L2
0(V ) = {f ∈ L2(V ) :

∑
v∈V f(v) = 0}. We may assume after rescaling that f is real-valued. By

considering where f achieves its maximum, the averaging interpretation shows that f corresponds
to an eigenvalue strictly less than 1. Moreover, a similar argument applied to |f | shows that every
eigenvalue is at most 1 in absolute value. Therefore ∆ = k(I − 1

kA) has spectrum 0 = λ0(X) <
λ1(X) ≤ · · ·λn−1(X) ≤ 2k. The difference λ1(X)− λ0(X) is called the spectral gap.

For each e ∈ E, arbitrarily choose an orientation: a positive end e+ and a negative end e−.
Define d : L2(V )→ L2(E) by df(e) = f(e+)− f(e−). Regardless of the choice of orientation, it can
then be shown that ∆ = d∗d, or equivalently 〈f,∆g〉 = 〈df, dg〉 for all f, g ∈ L2(V ).
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Proposition 2.5. For a finite connected regular graph X, we have λ1(X) = inff∈L2
0(V )

||df ||2
||f ||2 .

Proof. By the discussion above, λ1(X) is the smallest eigenvalue of ∆ on L2
0(V ), so

λ1(X) = inf
f∈L2

0(V )

〈∆f, f〉
〈f, f〉

= inf
f∈L2

0(V )

〈df, df〉
〈f, f〉

.

The following bounds for h(X) are the discrete analogues of the Cheeger-Buser inequality. The
upper bound is due to Dodziuk [14] and Alon [1]; see Propositions 4.2.4 in [22]. Here we only prove
the lower bound, variously attributed to Tanner [30] and to Alon and Milman [2].

Proposition 2.6 (Discrete Cheeger-Buser Inequality). If X is a finite k-regular graph, then
h2(X)
2k ≤ λ1(X) and h(X) ≥ λ1(X)

2 . Consequently, finite k-regular graphs Xi form a family of
expanders if and only if they have a uniform spectral gap, i.e. lim infi→∞ λ1(Xi) > 0.

Proof of the second inequality. Let X = X(V,E). For any partition V = A∪B with say |A| ≤ |B|,
define f ∈ L2

0(V ) by f(x) = |B|χA − |A|χB. By Proposition 2.5,

λ1(X) ≤ ||df ||
2

||f ||2
=
|V |2|E(A,B)|
|V ||A||B|

≤ 2 · |E(A,B)|
|A|

= 2h(X).

2.4 Rapid Mixing in Random Walk

Spectral gap leads us to a further reinterpretation of expansion in terms of random walks.
Let X = X(V,E) be a k-regular graph with n vertices. Consider a random walk on X in which

one moves from a vertex to one of its adjacent vertices with equal probability 1
k . Each step of the

random walk can be characterized by a probability measure µ ∈ L2(V ) (i.e. 0 ≤ µ(v) ≤ 1 for all
v ∈ V and

∑
v∈V µ(v) = 1), where µ(v) represents the probability of being at vertex v. Then the

random walk defines the transition operator M on L2(V ) that takes µ to the probability measure
at the next step, Mµ(v) = 1

k

∑
u∼v µ(u).

Note that M is exactly the averaging operator 1
kA from the previous section. If X is connected,

we saw that 1
kA has spectrum 1 = λ0 > λ1 ≥ · · · ≥ λn−1 ≥ −1, where now λ1 denotes the largest

nontrivial eigenvalue of 1
kA, and that the expander property is equivalent to a uniform spectral gap

λ1 ≤ c < 1. If in addition X is not bipartite, it can be shown that −1 is not an eigenvalue. Then
|λi| < |λ0| for every i 6= 0, so iterating 1

kA brings every function close to the eigenspace of λ0, i.e.
the constants; that is, random walk converges to uniform distribution. The rate of convergence is
controlled by the spectral gap (see Section 4.5 in [22]). In particular, expansion is related to rapid
mixing, the rapid convergence of random walk to uniform distribution.

Families of expanders were first constructed as Cayley graphs of quotients of certain finitely
generated groups. We now specialize to this setting.

Definition 2.7. Let G be a group and S a finite symmetric (i.e. S−1 = S) generating set for
G. The Cayley graph of G with respect to S, denoted G(G,S), is the graph with vertex set G and
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edge set {{g, gs} : g ∈ G, s ∈ S)}. Define the probability measure µS on G by µS = 1
|S|
∑

g∈S δg,

where δg is the Dirac mass at g. For probability measures µ, ν ∈ L2(G), define their convolution by
(µ ∗ ν)(g) =

∑
h∈G µ(gh−1)ν(h). One easily checks that convolution is symmetric and associative,

and that the convolution of two probability measures is again a probability measure. Write µ(k) for
µ convolved with itself k times.

For a random walk on the |S|-regular graph G(G,S), since each g ∈ G is adjacent to gs−1, s ∈ S,
we have Mµ(g) = 1

|S|
∑

s∈S µ(gs−1) =
∑

s∈G µ(gs−1)µS(s) = (µ ∗ µS)(g). The expander property
is thus equivalent to a uniform spectral gap λ1 ≤ c < 1 in the convolution operator M = ∗µS . We
will revisit this interpretation in Section 4 in the context of expansion in certain linear algebraic
groups.

3 Property (T ), Property (τ), and Selberg’s 3
16 Theorem

As already mentioned, first explicit constructions of families of expanders came from Cayley graphs
of quotients of certain finitely generated groups. This section introduces the Kazhdan Property (T ),
the related Property (τ), and Selberg’s 3

16 Theorem, and explain their connection to expanders.

3.1 Property (T ) and the Explicit Construction of Expanders

The first construction of a family of expanders used the representation-theoretic Property (T ), an
idea due to Margulis [24]. We begin with a definition of Property (T ) that more directly leads to
expanders.

For the rest of this paper, G will denote a locally compact group. For a Hilbert space H, write
U(H) for the group of invertible unitary bounded linear operators on H. A (unitary) representation
(H, ρ) of G is a group homomorphism ρ : G → U(H) such that g 7→ ρ(g)h is continuous for every
h ∈ H.

Definition 3.1. A group G is said to have Property (T ) (or be a Kazhdan group) if there exists
ε > 0 and a compact subset K of G such that for every representation (H, ρ) of G with no non-
trivial invariant vector and every v ∈ H, ||ρ(k)v − v|| > ε||v|| for some k ∈ K. The constant ε is
called the Kazhdan constant.

To put another way, a group G has Property (T ) if every representation with no non-trivial
invariant vector also has no almost-invariant vector. For finitely generated groups with Property
(T ), non-almost-invariance can be detected by any generating set. More precisely

Proposition 3.2 (Remark 3.2.5 in [22]). Let G be a finitely generated discrete group with Property
(T ). For any finite symmetric (S−1 = S) generating set S of G, there exists ε > 0 such that for
every representation (H, ρ) with no non-trivial invariant vector and every v ∈ H, ||ρ(s)v−v|| > ε||v||
for some s ∈ S.
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Proof. Assuming that the Proposition fails for S, (H, ρ), and v ∈ H, we will obtain a contradiction
to Property (T ). Let ε > 0 and a compact subset K of G be given. Since G is discrete, K is finite,
so any k ∈ K can be written as a word of length at most say l in elements of S; say k = sm · · · s1,
si ∈ S, m ≤ l. Since ||ρ(s)v − v|| ≤ ε

l ||v|| for every s ∈ S,

||ρ(k)v − v|| ≤
m∑
i=1

||ρ(si) · · · ρ(s1)v − ρ(si−1) · · · ρ(s1)v|| =
m∑
i=1

||ρ(si)v − v|| ≤ m
ε

l
||v|| ≤ ε||v||.

Expanders arise as Cayley graphs of quotients of finitely generated groups with Property (T ).

Proposition 3.3 (Proposition 3.3.1 in [22]). Let G be a finitely generated group with Property (T ),
L a family of finite-index normal subgroups of G, and S a finite symmetric generating set for G.
For each N ∈ L, write SN for the natural projection of S to G/N . Then {G(G/N,SN )}N∈L is a
family of expanders.

Proof. Take ε > 0 as in Proposition 3.2. Fix N ∈ L, and let H = L2(G/N). For α ∈ G and f ∈ H,
define α · f ∈ H by (αf)(x) = f(xα). One easily checks that this is an action of G on H by linear
operations. In fact, this gives a unitary representation of G since ||α · f ||2 =

∑
x∈G/N |f(xα)|2 =∑

x∈G/N |f(x)|2 = ||f ||2. Further, H0 = {f ∈ H :
∑

x∈G/N f(x) = 0} is a subrepresentation with
no non-trivial invariant function. Indeed, H0 is clearly G-invariant, and since G acts transitively
on G/N , the invariant functions in H are precisely the constant functions.

Write n = |G/N |. Let G/N = A ∪ B be a partition with a = |A| ≤ |B| = b. Then f := bχA −
aχB ∈ H0, so by Proposition 3.2, ||sf−f || > ε||f || for some s ∈ S. We have ||f ||2 = ab2+ba2 = nab
and ||sf − f ||2 =

∑
x∈V (f(xs)− f(x))2. Non-zero contributions to the last sum come from x ∈ V

for which adjacent vertices xs and x lie in distinct subsets of the partition V = A ∪B. Each such
x contributes (a+ b)2 = n2, and {xs, x} ∈ ∂A with each edge appearing at most twice in this way,
so ||sf − f ||2 ≤ 2|∂A|n2. Hence

|∂A| ≥ ||sf − f ||
2

2n2
>
ε2||f ||2

2n2
=
ε

2
· ab
n
≥ ε2

4
|A|.

Since N ∈ L was arbitrary, the Proposition is proved.

The key step of the proof was to translate non-almost-invariance from functions to sets. Since
||sf−f ||measures the growth of A under multiplication by a single generator s, Proposition 3.2 says
that every subset grows under multiplication by at least one of the generators. Note in particular
that, having chosen S, the Kazhdan constant can be related to the expansion constant.

3.2 Fell Topology, Property (T ), and Property (τ)

Here, we briefly discuss the original representation-theoretic definition of Property (T ) and the
related Property (τ). More details can be found in [3].

As in the finite-dimensional case, we may define notions of equivalence and irreducibility for
unitary representations. Write Ĝ for the unitary dual of G, the space of equivalence classes of
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irreducible unitary representations of G. For an adequate theory, the notion of subrepresentation
from the finite-dimensional setting must be replaced by that of weak containment. The Fell topology,
named after Fell for his work in the 1960s, provides a natural setting for this study.

Definition 3.4. The Fell topology on Ĝ is generated by the following open neighborhoods for each
(H, ρ) ∈ Ĝ: for a compact subset K of G, ε > 0, and v ∈ H of norm one, W (K, ε, v) consists of
(H ′, ρ′) ∈ Ĝ for which there exists v′ ∈ H of norm one such that |〈v, ρ(g)v〉 − 〈v′, ρ′(g)v′〉| < ε for
all g ∈ K.

Property (T ) can be reformulated using the Fell topology, as in (3) below. This was Kazhdan’s
original definition of Property (T ), which he defined in the mid-60s in the context of representations
of semi-simple Lie groups [19].

Proposition 3.5. The following are equivalent.

(1) G has Property (T ), i.e. there exists ε > 0 and a compact subset K of G such that for every
representation (H, ρ) of G with no non-trivial invariant vector and every v ∈ H of norm one,
||ρ(k)v − v|| > ε for some k ∈ K.

(2) There exists ε > 0 and a compact subset K of G such that for every non-trivial irreducible
representation (H, ρ) of G and every v ∈ H of norm one, ||ρ(k)v − v|| > ε for some k ∈ K.

(3) The trivial representation ρ0 is isolated in Ĝ in the Fell topology.

Partial proof. Consider a neighborhood W (K, ε, v0) of the trivial representation (H0, ρ0). Then
〈v0, ρ0(g)v0〉 = 1 for all g ∈ G, so for any (ρ,H) ∈ Ĝ and v ∈ H of norm 1, ||ρ(g)v − v||2 =
||ρ(g)v||2 + ||v||2 − 2〈v, ρ(g)v〉 = 2|〈v0, ρ0(g)v0〉 − 〈v, ρ(g)v〉| for all g ∈ G. Hence W (K, ε, v0) does
not depend on v0, and (H, ρ) ∈ W (K, ε, v0) if and only if there exists v ∈ H of norm 1 such that
||ρ(k)v − v|| <

√
2ε for all k ∈ K.

Clearly (1) ⇒ (2). The trivial representation ρ0 is isolated exactly when some W (K, ε, v0)
contains only ρ0, which by the previous paragraph is exactly (2). Thus (2) ⇔ (3). We omit the
proof of (3) ⇒ (1), which uses further notions of unitary representations; see for example [34].

Note that (3) lacks the Kazhdan constant, which we saw was related to the expansion constant.
Expanders with explicit expansion constants are particularly desired in many applications.

Looking back to the construction of families of expanders, note that the proof of Theorem 3.3
only uses the defining condition of Property (T ) for subrepresentations of the left-regular represen-
tations L2(G/N), and that N in each case acts trivially. This motivates a “relative” Property (T ),
called Property (τ); an analogous proof shows the equivalence of the following two definitions.

Definition 3.6. Let G be a finitely generated group and L a family of finitely-index normal sub-
groups of G. Let R = {ϕ ∈ Ĝ : kerϕ ⊃ N for some N ∈ L}. We say that G has property (τ) with
respect to L if the following equivalent conditions hold.

(1) The trivial representation ρ0 is isolated in R in the Fell topology.
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(2) For any finite generating set S of G, there exists ε > 0 such that for every representation
(H, ρ) ∈ R with no non-trivial invariant vector and every v ∈ H, ||ρ(s)v − v|| > ε||v|| for
some s ∈ S.

We say that G has property (τ) if it has property (τ) with respect to the family of all finite-index
normal subgroups.

With these definitions, Property (T ) clearly implies Property (τ). By the observation above,
Theorem 3.3 holds with Property (τ) with respect to L. In fact, it can be shown that this is also
necessary.

Theorem 3.7 (Theorem 4.3.2 in [22]). Let G be a finitely generated group with a finite symmetric
generating set S, and let L be a family of finite-index normal subgroups of G. Then G has Property
(τ) with respect to L if and only if {G(G/N,SN )}N∈L is a family of expanders.

Thus Property (τ) provides yet another equivalent reformulation of the expander property,
opening up the subject to the use of representation-theoretic notions such as Property (T ).

3.3 Expanders from SL3(Z)

We obtain our first example of a family of expanders by showing that SL3(Z) has Property (T ).
The proof below follows Lubotzky’s treatment (Section 3.1 [22]) of Kazhdan’s original proof.

Theorem 3.8 (Kazhdan, [19]). SL3(Z) has Property (T ).

The proof relies on the following results, which use notions of induced representations and
are beyond the scope of this paper. In particular, the first result arises from Kazhdan’s original
motivation for defining Property (T ), to study properties of lattices in semi-simple Lie groups.

Theorem 3.9. Let Γ be a lattice in G, i.e. a discrete subgroup of G such that G/Γ has finite
measure in the Haar measure induced from G. Then G has Property (T ) if and only if Γ has
Property (T ).

Proposition 3.10. The trivial representation of G = R2 o SL2(R) is isolated in R = {ρ ∈ Ĝ :
ρ|R2 is non-trivial}. Equivalently, if a representation (H, ρ) of G has almost-invariant vectors, then
(H, ρ) contains some representation not in R. In particular, some non-zero v ∈ H is fixed by R2.

With these in place, Theorem 3.8 follows from

Lemma 3.11. Let E = SL2(R) and N = {( 1 t
0 1 ) : t ∈ R}. For any representation ρ of E, every

vector fixed by N is fixed by E.

Proof. Fix v 6= 0 fixed by N . It suffices to show that f(g) := 〈ρ(g)v, v〉 is constant on E, for then
〈ρ(g)v − v, v〉 = f(g)− f(e) = 0 and so ρ(g)v = v for all g ∈ E.
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Under the natural action of E on R2, ( 1
0 ) has orbit R2 \ {0} and stabilizer N , yielding the

bijection

E/N −→ R2 \ {0}(
a b
c d

)
N 7−→

(
a b
c d

)(
1
0

)
=

(
a
c

)
.

Since f(gn) = 〈ρ(g)ρ(n)v, v〉 = 〈ρ(g)v, v〉 = f(g) for all n ∈ N and g ∈ E, we may define f
on E/N by f(gN) = f(g), then view it via the bijection above as a function on R2 \ {0}. Since
( 1 t
0 1 )( x ∗y ∗ ) = ( x+ty ∗y ∗ ), N acts on R2 \{0} like ( 1 t

0 1 ) ( xy ) = ( x+tyy ). Moreover, f(ng) = f(g) for every
n ∈ N , so f is constant on N -orbits, i.e. on every line parallel to the x-axis, and so by continuity
also on the x-axis (minus the origin). As a function on E, f is constant on P = {

(
a b
0 d

)
∈ E},

corresponding to the x-axis. Hence v is fixed by P .
Similarly, under the action of E on P1(R) by

(
a b
c d

)
(x : y) = (ax + by : cx + dy), ∞ = (1 : 0)

has orbit P1(R) and stabilizer P , yielding the bijection

E/P −→ P1(R)(
a b
c d

)
P 7−→

(
a b
c d

)
(1 : 0) = (a : c).

As before, f as a function on P1(R) is constant on P -orbits R and {∞}, hence on P1(R) by
continuity. Thus f is constant as a function on E.

Proof of Theorem 3.8. It is well known that SL3(Z) is a lattice in SL3(R). By Theorem 3.9, it
suffices to show that SL3(R) has Property (T ).

Consider the following subgroups of SL3(R).

J =


1 s

1 t
1

 : s, t ∈ R

 , E0 =


a b
c d

1

 ∈ SL3(R)


G =


a b s
c d t

1

 ∈ SL3(R)

 ∼= J o E0
∼= R2 o SL2(R).

Suppose that a representation (H, ρ) of SL3(R) has almost-invariant vectors. Then so does its
restriction to G, so by Proposition 3.10, some non-zero v ∈ H is fixed by R2 ∼= J . Now consider

E1 =


a b

1
c d

 ∈ SL3(R)

 , N1 = E1 ∩ J =


1 s

1
1

 : s ∈ R


E2 =


1

a b
c d

 ∈ SL3(R)

 , N2 = E2 ∩ J =


1

1 t
1

 : t ∈ R

 .

9



In the notation of Lemma 3.11, for i = 1, 2, the natural isomorphism of Ei to E takes Ni iso-
morphically to N . Since v is fixed by Ni, applying Lemma 3.11 to ρ|Ei , v is fixed by Ei. Since
E1 and E2 generate a dense subgroup of SL3(R), by continuity v is fixed by SL3(R). Thus every
representation of SL3(R) with almost-invariant vectors has a non-zero invariant vector, i.e. SL3(R)
has Property (T ).

Shortly after Kazhdan’s original paper, it was shown by Wang [34] that the proof generalizes
to all simple Lie groups of rank at least 2. In particular

Theorem 3.12. SLn(Z), n ≥ 3, has Property (T ).

This yields the following families of expanders.

Example 3.13 ([2]). It is well known that

An =


1 1 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1

 and Bn =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1

(−1)n−1 0 0 . . . 0


generate SLn(Z). Consequently, for every n ≥ 3, G(SLn(Fp), {An, Bn}p) form a family of expanders
as p runs through all primes.

3.4 Expanders from SL2(Z) and Selberg’s 3
16

Theorem

Cayley graphs of certain quotients of SL2(Z) also form a family of expanders, but for a reason
fundamentally different from that for SLn(Z), n ≥ 3. In fact, we have

Proposition 3.14. SL2(Z) does not have property (T ).

Proof. It is well known that SL2(Z) contains a free subgroup of finite index (e.g. 〈( 1 2
0 1 ) , ( 1 0

2 1 )〉),
which surjects to Z. The Proposition therefore follows from Theorem 3.9 and the following Lem-
mata.

Lemma 3.15. Z does not have Property (T ).

Proof. Consider the irreducible representations ρn : Z → C× = U(C) defined by ρn(x) = e2πix/n.
Since ρn(±1) = e±2πi/n is rotation by angle ±2π

n , for any ε > 0 and v ∈ C, we have ||ρn(±1)v−v|| ≤
ε||v|| for all large n. Since {±1} generates Z, the Lemma follows by Proposition 3.2.

Lemma 3.16. Any homomorphic image of a Kazhdan group is Kazhdan.

Proof. If ϕ : G→ ϕ(G) is a continuous homorphism, any representation (H, ρ) of ϕ(G) pulls back
to a representation (H, ρ ◦ ϕ) of G. If G is Kazhdan with ε > 0 and K ⊂ G, then since ϕ(K) is
again compact, ϕ(G) is Kazhdan with the same ε and ϕ(K).
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One nevertheless obtains expanders from SL2(Z) through Selberg’s 3
16 Theorem. We have

already mentioned the analogy between compact Riemannian manifolds and finite graphs in the
contexts of the Cheeger constant and the Laplacian. To understand how Selberg’s 3

16 Theorem re-
lates to expanders, we must first make this connection more precise. The following rough treatment
will suffice for our purpose; for more details, see [12].

As in the set-up of Property (τ), let G be a finitely generated group and L = {Ni} a family of
finite-index normal subgroups of G. Suppose G = π1(M) for some compact Riemannian manifold
M . Then G acts on the universal cover U of M , and M = U/G. Fix a compact fundamental domain
D. It can be shown that we may choose a generating set S for G such that for every s ∈ S, D and
s·D intersect in a “face” ofD. For eachNi ∈ L, there is a covering map ϕi : U →M/(G/Ni) = U/Ni

to the corresponding finite-sheeted cover of M , and G/Ni acts on U/Ni with fundamental domain
ϕi(D). Let Si be the natural projection of S to G/Ni. Then G(G/Ni, Si) can be viewed naturally
as a finite approximation of U/Ni: vertex gNi corresponds to the translate gNi · ϕi(D) of the
fundamental domain, and two translates are connected if and only if they share a face. The
following easy example should clarify the matter.

Example 3.17. Consider Z = π(S1). Then Z acts on the universal cover R by translation, with
fundamental domain [0, 1] and corresponding generators {±1}. For every finite-index subgroup
nZ, the quotient Z/nZ acts on the corresponding cover R/nZ of S1 = R/Z by translation, with
fundamental domain [0, 1]/nZ. Then G(Z/nZ, {±1}) can be realized by associating each a + nZ
with the translate [a, a+1]/nZ of the fundamental domain. Each a+nZ is adjacent to (a±1)+nZ;
correspondingly, [a, a + 1]/nZ is connected to [a + 1, a + 2]/nZ and [a − 1, a]/nZ, which share a
“face” (endpoint) with [a, a+ 1]/nZ.

This partition of the compact manifold U/Ni into translates of ϕi(D) allows one to relate the
Cheeger constant of U/Ni to that of its approximating Cayley graph. In particular

Theorem 3.18. In the set-up above, lim infi→∞ h(U/Ni) > 0 if and only if lim infi→∞ h(G(G/Ni, Si))
> 0. Consequently, G(G/Ni, Si)) form a family of expanders if and only if lim infi→∞ h(U/N) > 0.

We apply this to the action of the modular group SL2(Z) on the (hyperbolic) upper half plane H
by fractional linear transformations. It can be shown that the Laplacian ∆ = −y2( ∂2

∂x2
+ ∂2

∂y2
) is well

defined on any quotient Γ\H for a subgroup Γ of SL2(Z). Selberg proved a lower bound for λ1(Γ\H)
when Γ is a congruence subgroup, a finite-index subgroup of SL2(Z) containing ker(SL2(Z) →
SL2(Z/mZ)) for some m > 0.

Theorem 3.19 (Selberg’s 3
16 Theorem [28]). If Γ is a congruence subgroup of SL2(Z), then

λ1(Γ\H) ≥ 3
16 .

Selberg’s proof relates the eigenvalues λj to Kloosterman sums, certain exponential sums that
arise as the Fourier coefficients of modular forms. He then uses a bound by Weil on Kloosterman
sums, which itself comes from the Riemann hypothesis for curves over a finite field, also proved by
Weil. More specifically, Selberg forms a Dirichlet series Z whose coefficients are Kloosterman sums,
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then cusp forms Um with Fourier coefficients related to Z. Considering the Hilbert space of cusp
forms in L2(H, dxdy

y2
) (the hyperbolic measure), Selberg rewrites Um in the basis of eigenvectors

for the self-adjoint operator ∆. The poles of these coefficients can be expressed in terms of the
corresponding eigenvalues, thus relating λj to poles of Um, and in turn to poles of Z. Now, Weil’s
result bounds the possible poles of Z, and hence bounds λj .

As an aside, Selberg’s conjecture that the lower bound 1
4 holds remains a fundamental open

problem in the theory of the modular forms.
Selberg’s 3

16 Theorem together with Theorem 3.18 prove that G(SL2(Fp), Sp) form a family of
expanders for any fixed finite generating set S of SL2(Fp). In fact, similar considerations apply
when 〈S〉 is merely a finite-index subgroup of SL2(Fp). We therefore have

Theorem 3.20. Let S be a finite subset of SL2(Z). If S generates a finite-index subgroup of
SL2(Z), then G(SL2(Fp), Sp) form a family of expanders as p runs through all primes.

3.5 Summary of Expander Property

The following theorem summarizes the equivalences among the various formulations of the expander
property for Cayley graphs of quotients of finitely generated groups.

Theorem 3.21 (Theorem 4.3.2 in [22]). Let G be a finitely generated group with a finite generating
set S. Let L = {Ni} be a family of finite-index normal subgroups of G. Write Si for the natural
projection of S to G/Ni. The following are equivalent.

(1) G(G/Ni, Si) form a family of expanders.

(2) lim infi→∞ h(G(G/Ni, Si)).

(3) lim infi→∞ λ1(G(G/Ni, Si)).

(4) G has Property (τ) with respect to L.

If in addition G = π(M) for a compact Riemannian manifold M with universal cover U , then the
following are also equivalent to the conditions above.

(5) lim infi→∞ h(U/Ni) > 0.

(6) lim infi→∞ λ1(U/Ni) > 0.

Proof. We have already proved or mentioned all the implications. (1) ⇔ (2) was Proposition 2.3,
a trivial consequence of the definitions of edge expansion and the Cheeger constant. (2) ⇔ (3)
and (5) ⇔ (6) were the Cheeger-Buser inequality and its discrete analogue (Proposition 2.6).
Extending this analogy between finite graphs and compact manifolds, we viewed the Cayley graphs
G(G/Ni, Si) as finite approximations of compact manifolds U/Ni and indicated that this leads to
(2) ⇔ (5) (Theorem 3.18). Finally, we recorded (1) ⇔ (4) as Theorem 3.7, noting that the proof
of the reverse implication for Property (T ) (Theorem 3.3) in fact only required Property (τ).
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4 Expansion in Linear Algebraic Groups

Given Theorem 3.20, a natural question, considered by Lubotzky and Weiss by the early 90s [22], is
to determine the condition on a subset S of SL2(Z) under which G(SL2(Fp), Sp) form a family of ex-
panders. Lubotzky captured the challenge in his “1-2-3 problem” [23]: do G(SL2(Fp), {( 1 i

0 1 ) , ( 1 0
i 1 )})

form a family of expanders for i = 1, 2, 3? Selberg’s theorem only applies to i = 1, 2; the subgroup
〈( 1 3

0 1 ) , ( 1 0
3 1 )〉 does not have finite index in SL2(Z).

Although the 90s saw encouraging partial results towards this question, a breakthrough only
began in 2005 with Helfgott’s work [16], which incorporated tools of arithmetic combinatorics. In
this section, we briefly discuss Helfgott’s Triple Product result, summarize the key components
of Bourgain and Gamburd’s complete resolution of the question for SL2(Fp) [4], and give a brief
survey of recent generalizations.

4.1 Sum-Product Phenomenon and Helfgott’s Triple Product Result

We have already noted that the expander property for Cayley graphs amounts to uniform growth
of small subsets under multiplication by the generators. We therefore begin with a discussion of
general results on such growth.

Arithmetic combinatorics studies combinatorial estimates associated with arithmetic operations
such as addition and multiplication. A typical question is the following: For a finite subset A of
some ring, what can be said about the sizes of A+A := {a+b : a, b ∈ A} and A·A := {ab : a, b ∈ A}?
The last decade saw a number of developments in this field; for further details, see [32].

Of particular relevance to expanders is the so-called sum-product phenomenon. The earliest
result of this type is the following, proved in 2004.

Theorem 4.1 (Sum-Product Phenomenon in Fp, Bourgain, Katz, and Tao [9]). Let A be a subset of
a finite field Fp, where p is prime. If pδ < |A| < p1−δ for some δ > 0, then |A+A|+|A·A| > c|A|1+ε,
where c > 0 and ε > 0 depend only on δ.

The condition |A| > pδ was subsequently dropped by Bourgain, Glibichuk, and Konyagin [8].
Thus every subset of Fp that is not too large grows under either addition or multiplication with
itself. Among other tools of arithmetic combinatorics, Helfgott’s result uses a generalization of this
sum-product phenomenon to arbitrary finite fields.

The following is Helfgott’s main result, Triple Product expansion in SL2(Fp).

Theorem 4.2 (Triple Product expansion in SL2(Fp), Helfgott [16]). Let p be a prime. Let A be a
subset of SL2(Fp) not contained in any proper subgroup. If |A| < p3−δ for some fixed δ > 0, then
|A ·A ·A| > c|A|1+ε, where c > 0 and ε > 0 depend only on δ.

Helfgott’s idea is to relate the growth of A to that of its trace set tr(A) = {tr(a) : a ∈ A},
then apply a sum-product result to tr(A). Very roughly, his argument proceeds as follows. If
some A violates the theorem, then A must have high “multiplicative structure.” In particular, A
intersects many conjugacy classes, from which it can be shown that it contains many simultaneously
diagonalizable elements. Non-expansion then yields a contradiction with a sum-product theorem.
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4.2 Expansion in SL2(Fp)

Starting with Helfgott’s result, Bourgain and Gamburd provided a necessary and sufficient condition
on a finite symmetric subset S of SL2(Z) under which G(SL2(Fp), Sp) form a family of expanders:
that S generates a Zariski-dense subgroup of SL2(Z), a much weaker condition than generating a
finite-index subgroup [4]. They deduced this as a result of the following quantitative result.

Theorem 4.3 (Bourgain and Gamburd, Theorem 3 in [4]). Fix k ≥ 2 and τ > 0. For each prime
p, suppose that Sp with |Sp| = 2k is a symmetric generating set for SL2(Fp) such that

girth(G(SL2(Fp), Sp)) ≥ τ log2k p.

Then G(SL2(Fp), Sp) form a family of expanders as p runs through all primes.

The girth of a graph is the length of a shortest closed path.
Let µSp = 1

|Sp|
∑

g∈Sp
δg. Then as we saw in Section 2.4, the expander property is equivalent to a

spectral gap λ1 ≤ c < 1, uniform in p, for the convolution operator ∗µSp on L2(SL2(Fp)). Bourgain
and Gamburd exhibit this spectral gap using an idea of Sarnak and Xue [27], by bounding the trace

of ∗µ(2l)Sp
. More precisely, recall that ∗µSp is the averaging operator 1

2kA, where A is the adjacency

matrix of G(SL2(Fp), Sp). Since A is given as the sum of the values of the regular representation
of SL2(Fp) at the generators, a result of Frobenius, which states that non-trivial irreducible repre-
sentations of SL2(Fp) have dimension at least p−1

2 , provides a lower bound for the multiplicity of

λ1. In particular, p−1
2 λ2l1 ≤

∑
λ2lj . On the other hand, the trace equals |SL2(Fp)|µ(2l)Sp

(1) and, by

the symmetry of µSp , µ
(2l)
Sp

(1) =
∑

g∈G µ
(l)
Sp

(g)µ
(l)
Sp

(g−1) =
∑

g∈G(µ
(l)
Sp

(g))2 = ||µ(l)Sp
||22. Thus

p− 1

2
λ2l1 < |SL2(Fp)|||µ(l)Sp

||22.

This reduces the problem to showing that for any ε > 0, there exists C(ε, τ) > 0 such that

||µ(l)Sp
||2 < |SL2(Fp)|−1/2+ε for all l ≥ C(ε, τ) log2k p. Indeed, then λ2l1 � p−1|SL2(Fp)|2ε, and taking

l = C(ε, τ) log2k p yields a spectral gap independent of p.
For any probability measure µ on SL2(Fp), we have ||µ||2 ≥ |SL2(Fp)|−1/2, with equality when µ

is uniform. Thus the goal is to show that µSp convolved with itself approaches uniform distribution
at a fast enough rate independent of p. Bourgain and Gamburd showed this in two steps: escape
from proper subgroups and `2-flattening.

Proposition 4.4 (Escape from proper subgroups, Bourgain and Gamburd [4]). In the situation of
Theorem 4.3, let l0 = b12τ log2k pc− 1. Then there exists some ε < 3τ

16 such that the following holds:
For all l ≥ l0,

µ(l)(gH) < [SL2(Fp) : H]−ε

for any g ∈ SL2(Fp) and proper subgroup H < SL2(Fp).
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That is, after l0 steps, the random walk does not accumulate in any coset of any proper subgroup.
The proof makes use of two observations. First, the girth condition implies that, for words

of length up to l0, the Cayley graph G(SL2(Fp), Sp) is isomorphic to that of the free group on k
letters. Kesten’s classical result on random walk on a regular tree [20] then gives an upper bound
on the value of µ(l0) at any vertex. Second, by the classification of subgroups of SL2(Fp), due to
Dickson [29], if H is a proper subgroup of SL2(Fp) and |H| > 60, then H is solvable: in fact,
[[g1, g2], [g3, g4]] = 1 for all gi ∈ H.

The proof proceeds by contradiction. If the condition fails for some l, then it follows that in

fact µ
(l0)
S (g0H) > p−ε/2 for some g0 ∈ SL2(Fp) and so µ

(2l0)
S (H) > p−ε. Combined with Kesten’s

result, this implies that the number of words in H of length l0 is exponential in l0. Meanwhile, the
vanishing of the second commutators implies, by a combinatorial argument, that this number is in
fact at most polynomial in l0, providing the desired contradiction.

Proposition 4.5 (`2-flattening, Bourgain and Gamburd [4]; treatment by Varjú [33]). For any
ε > 0, there is some δ > 0 such that the following holds: If µ is a probability measure on SL2(Fp)
satisfying

||µ||2 > |SL2(Fp)|−1/2+ε and µ(gH) < [SL2(Fp) : H]−ε

for any g ∈ SL2(Fp) and proper subgroup H < SL2(Fp), then for any probability measure ν,

||µ ∗ ν||2 < ||µ||1/2+δ2 ||ν||1/22 .

This is exactly what we wanted: assuming escape from proper subgroups, convolution with
µ brings any measure closer to uniform distribution at a rapid rate independent of p. The proof

assumes that ||µ ∗ ν||2 > ||µ||1/2+δ2 ||ν||2 for any δ > 0 and obtains a lower bound on some µ(gH),
contradicting escape. By proving the same inequality for dyadic level-set approximations µ̃, ν̃ of
µ, ν, one produces level sets A and B with high multiplicative energy, roughly indicating common
multiplicative structure. By an arithmetic combinatorial result of Tao [31], this implies that some
symmetric set S close to both A and B is an approximate group; although not closed like an actual
group, S grows under multiplication in a controlled way. Then S ·S ·S does not grow, hence lies in a

proper subgroupH by Helfgott’s Triple Product expansion. The inequality ||µ∗ν||2 > ||µ||1/2+δ2 ||ν||2
then provides a lower bound on some µ(gS), and hence on µ(gH), as desired.

Theorem 4.3 now follows as a consequence of these Propositions. Given ε > 0, we are done if

||µ(l)Sp
|| < |SL2(Fp)|−1/2+ε already for l = l0, i.e. if µ

(l0)
Sp

is already close to uniform distribution.

Otherwise, since escape holds for l ≥ l0, convolving µ
(l)
Sp

with itself rapidly decreases the norm,

reaching |SL2(Fp)|−1/2+ε in finitely many steps independent of p.

4.3 Survey of Recent Results

Several generalizations followed Bourgain and Gamburd’s result for SL2(Z/pZ): for SL2(Z/nZ), n
square-free, by Bourgain, Gamburd, and Sarnak [7], and SL2(Z/pnZ) by Bourgain and Gamburd [5].
In each case, the necessary and sufficient condition is that S generates a Zariski-dense subgroup.
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These generalizations all required a suitable Triple Product result. In this direction, the case
SL3(Fp) was handled by Helfgott himself [17], and in 2010, Breuillard, Green, and Tao [11] and
Pyber and Szabó [25] independently proved a Triple Product result for all finite simple groups of
Lie type.

As in SL2(Fp), this Triple Product result has led to correspondingly general results on ex-
panders. Sufficient conditions for expanders were obtained for SLd(Z/qZ), q arbitrary, by Bourgain
and Varjú [10], and for square-free quotients of SLn(OK), K any number field, by Varjú [33]. Salehi
Golsefidy and Varjú [26] recovered an exact characterization for square-free quotients: for a finite
subset S ⊂ GLn(Q), Cayley graphs of square-free quotients of 〈S〉 form a family of expanders if and
only if the connected component of the Zariski closure of 〈S〉 is perfect, i.e. equals its own commu-
tator subgroup. Such expanders arising from square-free quotients have applications to affine sieve
methods in number theory; see [7] by Bourgain, Gamburd, and Sarnak for the case SL2(Z/nZ), n
square-free.

The proofs of these generalizations still use Sarnak and Xue’s idea and bound the trace from
above using escape from proper subgroups and `2-flattening. For the latter, the argument for
SL2(Fp) generalizes given a corresponding Triple Product result. However, the original argument
for escape relied crucially on the structure of SL2(Fp), and generalizations have required completely
new approaches.

5 Diameter of Cayley Graphs of SL2(Fp)

We end with an open problem that may be approached separately from the rest of the theory.

Proposition 5.1. If k-regular graphs Xi form a family of expanders, then diam(Xi) = Θ(log |Xi|),
where the constants depend only on k and the expansion constant c.

Proof. Fix some X = X(V,E) in this family, and let a, b ∈ V . Let Ad be the set of vertices with

distance at most d from a, and let d(a) be the smallest positive integer for which |Ad(a)| >
|X|
2 . The

choice of d(a) and edge expansion imply |X|2 ≥ |Ad(a)−1| ≥ · · · ≥ (c + 1)d(a)−1|A0| = (c + 1)d(a)−1,

so d(a) ≤ logc+1
|X|
2 + 1. If we similarly define Bd and d(b) for b, then Ad(a) and Bd(b) must

overlap, so dist(a, b) ≤ d(a) + d(b) ≤ 2(logc+1
|X|
2 + 1). Since a and b were arbitrary, this shows

diam(X) = O(log |X|).
On the other hand, there is 1 vertex at distance 0 from a, k at distance 1, and at most k(k −

1)d−1 < kd at distance d. Hence |X| <
∑diam(X)

d=0 kd < kdiam(X)+1, so diam(X) > logk |X| − 1.

For fixed n ≥ 2, if G(SLn(Fp), Sp) form a family of expanders as p runs through all primes,
then this Proposition implies that diam(G(SLn(Fp), Sp)) = Θ(log |SLn(Fp)|) = Θ(log p). However,
the proof provides no fast algorithm (say polynomial time in log p) that expresses a given element
as word of length O(log p) in the generators. For n ≥ 3, Kassabov and Riley have shown the
even stronger result that diam(SLn(Z/kZ)) = O(n2 log k) by exhibiting such an algorithm [18].
However, there is no known analogue for SL2(Fp).
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Problem 5.2. Does there exist a polynomial-time (in log p) algorithm that expresses a given ele-
ment of SL2(Fp) as a word of length O(log p) in ( 1 1

0 1 ) and ( 1 0
1 1 )?

The best known result is a probabilistic algorithm due to Larson, with the following property.

Theorem 5.3 (Larsen [21]). There exist absolute constants c1, c2 > 0 such that the following holds:
for any ε > 0, there exists c(ε) > 0 such that for any element of SL2(Fp) for any prime p, the
algorithm will find a word of length ≤ c1 log p log log p in time ≤ c(ε) logc2 p with probability ≥ 1− ε.

There is no fast deterministic algorithm in the literature, even for expressing an element as a
word of polylogarithmic length.
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